Disk snooping:

V\i .\

an
assembly
language
utility
for

the

curious
—

(In preparing content for each issue of The Portable
Companion, we try to find something for both the novice
and advance computer user. If you're a novice, be advis-
ed that the following article wasn’t intended for you.
This is an article for the computer literates among our
readers.)

Here is a little utility that is both useful and instruc-
tive. At the same time, it is very dangerous to use;
because it allows you to access and modify your Osborne
1 diskettes directly, without regard to CP/M file-
structure. NOTE: if you are ignorant about the ins and
outs of diskette input/output and prefer to remain that
way, you’d better skip this article completely. If you do
read on, be especially sure to heed the warnings at the
end of the article.

A diskette is physically nothing more than a piece of
plastic that has been coated with a type of magnetic
material and then inserted into a protective jacket. When
given the proper control signals, your Osborne 1 disk
drives can read data from a diskette or write data to a
diskette by influencing the magnetic coating of the
diskette in much the same way a tape-recorder influences
the magnetic coating on recording tape.

The arrangement of data on diskette is an elaborate
matter. First, the diskette is divided into “‘tracks.”
Tracks are merely concentric circles on the disk. Osborne
1 diskettes have 40 tracks. Next, tracks are divided into
“‘sectors.”’ Sectors are slippery characters on the Osborne
1. Physically, there are ten sectors of 256 bytes each on a
track of an Osborne single density diskette. The diskettes
do not come this way: they are “‘soft-sectored,”” which
means that the formatting program decides where the
sectors are and how they are to be designated. Normally
these physical sectors are numbered 0, 1, ..., 9,
although if you ever try to read your diskettes on a dif-
ferent make of computer you may find that it is
necessary to refer to these physical sectors as 1, 2,.. .,
10. In any case, you won’t have to worry about all of
that, because these ten physical sectors are divided into
twenty ‘‘logical sectors.”” Henceforth, whenever we refer
to a sector we will mean logical sector rather than
physical sector.

Normally, the user never hears about any of this (ex-
cept for the ‘‘bdos error: bad sector’’ message he con-
tends with constantly). CP/M relieves the user of having
to think about tracks and sectors by dividing disk data
into ““files.”” A file is merely a group of sectors that are
considered as one logical entity. CP/M itself keeps track
of which sectors belong to which files. It does this by us-
ing most of track 3 (tracks are numbered from zero) on
every disk. In the directory, one finds the names of all
the files on the diskette and information about the alloca-
tion of disk sectors.

Brett D. DePaola and Ronald S. Burkey

So what’s wrong with that? Nothing really, in a perfect
world (counting curiosity as an imperfection). In a
perfect world, data always comes in files, and there isn’t
the slightest reason to access the diskette sector by sector
(which is what our utility, “DISKMON,”’ allows you to
do). The world, however, is not perfect and we must take
into account several facts:

1) Try as we might, we cannot pretend that disk opera-
tions are always smooth. Even the most careful operator
runs into a power failure during a critical disk write that
makes lunchmeat of a valuable diskette. Lesser mortals
suffer more frequent errors, since thay occasionally do
such things as erasing the current copy of their latest pro-
gram, or turning off the computer before closing an open
file. Worse, diskettes sometimes self-destruct for no ap-
parent reason (though, fortunately, very seldom). The
knowledgeable user can recover from these mishaps if he
can access individual sectors of the disk. He can hunt
through the diskette looking for this lost data or he can
even repair damaged sectors (that is, sectors with im-
proper data in them).

2) Some people have more curiousity than the prover-
bial cat and must know how data is laid out on the
diskette simply because the user’s manual strongly
discourages doing so.

3) On a system disk, tracks 0, 1, and 2 hold the CP/M
system. On a non-system disk, these tracks, of course, do
not hold a system. In fact, they are not used at all.
However, if you could gain access to these tracks, you
could use this otherwise wasted space for your own pur-
poses. Exploitation of these free tracks may be the sub-
ject of a future article.

We present the DISKMON (DISK MONitor) utility
with the foregoing reservations. DISKMON works in
conjunction with DDT, the useful machine-language
monitor provided with the Osborne 1. Basically,
DISKMON can read a sequence of sectors from disk into
memory, or vice-versa, and can jump to DDT to allow
disassembly or modification of what has been read.

How to use DISKMON: first, of course, you must enter
the assembly-language listing included with this article us-
ing the non-document file creation function of WordStar,
assemble it with ASM.COM, and load it with LOAD.
COM. How to use DISKMON: first, of course, you must
enter the assembly-language listing included with this ar-
ticle using the non-document file creation function of
WordStar, assemble it with ASM.COM, and load it with
LLOAD. COM. (We have assumed a 60K system, and if
you are using some smaller system the initial ‘““EQU”’
statements must be changed to reflect that fact.) Run
DISKMON by typing:

DDT DISKMON.COM

(preceding either or both “DDT’’ and ‘“DISKMON
.COM?”’ by the appropriate drive name.) At this point,
you are in DDT and may perform any DDT function ex-
cept those that will destroy DISKMON. which is located
at hexadecimal addresses 0100-05FF. In particular, do
not load any other files using the DDT I and R com-
mands. To perform somedirect disk input/output type:

G100,105
which sends you to the DISKMON command menu.

Now you can do any or all of the following:

A) Choose the drive on which future diskette input/
output is to occur.

Choose the starting track number for such opera-
tions.

Choose the starting sector number for such opera-
tions.

Choose the starting memory address for such
operations

Options A-D set parameters to be used when the diskette
is actually read (option G) or written to (option H). The
read and write commands, explained below, update the
sector number, track number, and memory location as
they work. These parameters are printed on the screen
every time the command menu is presented. Further op-
tions are:

E) Save present parameters.

F) Restore old paramenters.

Options E-F are a convenience when you are continually
using the same sector number, track number, and
memory location. The final options are:

G) Read sector(s).

H) Write sector(s).

I) Goto DDT.

J) Go to CP/M command mode.

A typical session might go something like this: set into
DISKMON as described above. Use options A-D to set
drive =B, track =00, sector =00, memory address =0600.
(Incidentally, all numbers in all options are two-digit hex-
adecimal, except memory addresses, which are four-digit
hexadecimal.) Now use option E to save this parameter
pattern. Strictly speaking, theses steps would not be
necessary in this example,since these are the default set-
ting. Use option G to read 60 (decimal) sectors. (Option
G prompts you for the number of sectors, so you request
3C, which is the hexadecimal equivalent of 60.) You
would now have tracks 0-2 in memory, starting at 0600
(hex). Use option I to get into DDT. While in DDT, ex-
amine and modify. Type G100,105 to get back into
DISKMON. Use option F to restore the parameter values
track =00, sector =00, memory address =0600. Use op-
tion H to save 60 sectors. Use option J to quit.

Finally, a word of warning! This utility is very
dangerous, particularly the sector-write operation. Never
use DISKMON on a diskette for which you have no
backup unless it is absolutely unavoidable, and only then
if you know precisely what you are doing. Some sectors
of the diskette contain valuable information and access is
not directly allowed by CP/M for just that reason. For
example, the sample session above would make the
diskette involved unbootable, unless you confined
yourself to innocuous modifications such as changing the
copyright notice.

In short, this program can help you fix—or destroy—
diskettes depending on how you use it. DISKMON pro-
vides facilities, and though they are included in the Disk
Doctor package, they are found nowhere in the utilities
provided free with the Osborne 1.

B)
O
D)

December 1982/ January 1983 THE PORTABLE COMPANION 51

)
) DISKMONITOR UTILITY RET
ADSEC EQU QEI27H ;BIOS ENTRY POINT FOR READING A SECTOR : SUBROUTINE WHICH PREPARES FOR A DISK READ OR WRITE
WRSEC EGQU OEDRAH §BI0S ENTRY. POINT FOR WRITING TO A SECTOR] ,
PREPAR: LDA KDRV 3PUT DRIVE # IN A (2 1S RY, 1 IS B))
SELDSK EQU QESIBH $SELECT A DISK DRIVE MOV c,A -
SETDMA EQU QES24H $SET READ/WRITE BUFFER RDDRESS cALL SELDSK 3SET THE DISK!
SETTRK EQU @ESIEH $SET TRACK TO READ/WRITE LDA KTRK $PUT TRACK # IN A
BETSEC EQY QES21H $S6ET SECTOR TO RERAD/WRITE mov C,A A =) C
NTRY EQU 22a5K CAtL SETTRK $SET THE TRACK!
ORG 0100+ LDA KSEC $PUT SECTOR # IN A
Jme comm MoV CsA 1A - C
ORG Q105H CALL SETSEC 3SET THE SECTOR'
H LHLD KDMA §PUT THE STARTING ADDRESS OF READ/WRITE
DDTG0O: RST 7 $RETURN 70 DDT mov B,H 3 BUFFER INTO A
H Moy C,L
] THE COMMAND MODE -~ CONTROLS THE MAIN MENU CaLL S&TDMR §SET THE BUFFER!
RET
éﬂﬂﬂx CALL CHKPRM $PRINT THE EXISTING PARAMETER VALUES H
LXI1 D, CMENU tREADY THE COMMAND MENU 3 SUBROUTINE WHICH DISPLAYS THE CURRENT PARAMETERS
i c,9 PREPARE TO PRINT IT ; -
CALL NTRY $D0 IT! CHKPRM: LXI D, STR1 $SEND DRIVE # MESSAGE
il [CALL STRSND
CALL NTRY §GET COMMAND LDA KDRV $SEE WHAT'S IN KDRV
su1 AlH CrI 20 $IF IT'S A @@ THEN LEAP
CPI 26 jIF A O 8,1,2, ... ,25 J2 ALDOP 3 AHEAD TO ALOOP
InC COoMM ;5 GOTO COMm MVvI E,'B? $OTHERWISE PREPARE TO PRINT A "B"
Cmc $CLEAR THE CARRY Jmp ADUT 1SKIP AROUND THIS PART
RAL 1RA=8,2,4, ... ,58 ALOOP: MVI E,'R? $PREPARE TO PRINT AN “A"
MoV [$tPUT A INTO DE AOUT: MVl C,2 FPRINT WHATEVER WRS PREPARED
mMv1i D,9 caLL NTRY
LXI H, JMPTBL sHL=JUMP~-TABLE LXI D, STR2 $SEND TRACK & MESSAGE
DAD D $HL=JUMP-ADDRESS CAL.L STRSND
XCHG s DE=JUMP-ADDRESS LbA KTRK 3SEE WHAT'S IN KTRK
LDAX D CALL GETR
MoV LA ;PUT THE CONTENTS LXI D, STR3 ;SEND SECTOR % MESSAGE
INX 1] 3 OF THE JUMP-RDDRESS CALL STRSND
LDAX D ; INTO THE HL LDA KSEC 3;5EE WHAT'S IN KSEC
nov R, R 3 REGISTER PAIR CALL GETR
PCHL ;JUMP BY SWITCHING HL AND SP LXI D, STR4 $SEND BUFFER LOCATION MESSAGE
L] CALL STRSND
H SUBROUTINE TO WRITE 7O THE DISK LA KDMA+1 $SEE WHAT'S IN KDMA+!
3 cAaLL GETR
WRITE: LXI D, PS §SEND THE PROMPT LDA KDMA $SEE WHAT'S IN KDMA
CARLL STRSND GETR: cAaLL CNVRT sCONVERT IT TO 2 ASClI
CALL BTGET 3READ THE # OF SECTORS TO WRITE mv1 c,2 3 CHARACTERS
PUSH PSH $SAVE THIS NUMBER! mov E H 3 AND SEND THEM TO THE CONSOLE
LOOPW: POP PSH sREGET THIS NUMBER PUSH B :PRESERVE REGISTERS
Pl 22 ‘$QUIT IF # OF SECTORS =@ PUSH H
JZ COommM caLL NYRY 1PRINT!
DCR] ;DECREMENT # OF SECTORS TO WRITE popP H ;REGET REGISTERS
PUSH pSW ;RESAVE THIS NUMBER poP B
CALL PREPAR $}"PREPRRE" PRRAMETERS FOR WRITING MoV E, L $PRINT THE SECOND BYTE
CALL WRSEC $WRITE! caLL NTRY
CAtL MEMF I X $ADJUST THE BUFFER STARTING LOCATION RET
CALL PRFIX 3 AND THE SECTOR # FOR THE NEXT WRITE H
Jmp [Ralals 1) yRETURN TO DDT H SUBROUTINE TO SEND STRINGS TO THE CONSOLE
i H
H SUBROUTINE TO RERD THE DISK STRSND: MVI c,9 39 1S SYSTEM FUNCTION FOR SENDING
H cAaLL NTRY 3 STRINGS
READ: LXI D, P& $SEND THE PROMPT RET
CALL STRSND f
CALL BTGET $GEY THE # OF SECTORS TO READ H SUBROUTINE TO "CONVERT" § HEX BYYE INTO & RSCII BYTES
PUSH PSW ;SAVE THIS NUMBER H AND STORES THEM IN HL
LODPR: POP PSW ;BEGIN READ LOOP H
[0} 4 [;1F THE # OF SECTORS LEFT TO READ CNVRT1 PUSH PSuW :SAVE THE BYTE
J1 COmMm ;5 1S @ THEN RETURN TO COMMAND MODE ANI 009011118 3ZERD THE HIGH NYBBLE
DCR A sREDUCE THE # OF SECTORS LEFT TO REARD CALL DOVRT ;CONVERT THE LOW NYBBLE
PUSH PSK ;i BY 1 AND SAVE THIS NUMBER MoV LA $+STORE IT IN L
CALL PREPAR ;“PREPARE" PARAMETERS FOR READING pop PSW sREGET THE BYTE
caLL MEMF I X 3ADJUST THE BRUFFER STARTING LOCATION RRC §MOVE THE HIGH NYBBLE
CALL PRFIX § AND THE SECTOR # FOR THE NEXT RERD RRC 3 TO WHERE THE LOW NYBBLE WAS
t.00P: CALL RDSEC 3RERD* : RRC
crl 1 3IF A=1 THEN THERE WRAS A RERAD ERROR RRC
[o4 ERROR $IN THAT CASE PRINT ERROR MSG ANI Q0001111F 3ZERDO THE HIGH NYEBLE
ce1 BFFH ;IF A=FF THEN DISK WAS "“EUSY" cAaLL DOVRT ;CONVERT THE LOW NYBBLE
Jz LooP 7 IN THAT CASE TRY AGAIN MoV H, R 3STORE 1T IN R
Jmp LOOPR $RETURN TO DDT RET
] L]
] ROUTINE TO INCREMENT THE BUFFER STARTING H SUBROUTINE TO GIVE THE RSCII FORM QF
H LOCATION BY 128 BYTES] A HEX NUMBER
1 i
MEMFIX: LHLD «KDMA PUT THE EXISTING STARTING LOCATION INTO DOVRT: (5] AR sIF THE NUMBER 1S LESS THAN
(%31 D, 128 i HL Jc NUMI § @R THEN GOTO NUM1
DAD D ;THEN ADD 128 TO IT ADI 37H tOTHERWISE ADD 37H
SHLD KDMA §PUT THE NEW STARTING ADDRESS BACK INTO RET
RET 3 KDMA, THEN QUIT NUML 2 ant 3eH $ADD 3@H TO THE NUMBER
H REY
3 SUBROUTINE WHICH UPDATES THE OTHER PARAMETERS H
H H SUBROUTINE TO CHANGE THE DRIVE
PRFIX: LDA KSEC sUPDATE CURRENT SECTOR NUMBER 3
INR] CHDR: LXI D, P1 {SEND THE OROMPT
[20 yIF IT IS = TO 2@ THEN SET IT cALL STRSND
JINZ PRCONT 3 TO @ AND INCREMENT THE TRACK # ("2 c, ! ;READ THE DRIVE CHOICE
LDAR KTRK 3 BY 1 OTHERWISE JumMP TQ PRCONT CALL NTRY
INR A ; AND THEN RETURN cer 41H $IF IT'S AN e
STR KTRK J2 CHDRA t+ THEN JuMP AHEAD
Mv1 A, 2@ MV A, a1 jOTHERWISE MAKE IT A 'BY
PRCONT: STA KSEC Jmo SNDDSK
RET CHDRA: MV A, 08 §MAKE IT an 'Ar
] SNDDSK: STA KDRV {STORE CHOICE IN KDRV
H SUBROUTINE WHICH PRINTS R READ ERROR MESSAGE RND THE Jmp ComMM
[} CURRENT PRRAMETERS WHEN CALLED t
3 H SUBRUUTINE YO CHANGE THE TRACK
ERRORY LXI D, MES {PREPARE TO SEND ERROR MESSAGE H
CALL STRSND 3SEND IT! CHTRK: LXI D, P2 3SEND TKE PROMPT
cacL CHKDORM $DISPLAY PARAMETERS CALL STRSND

52 THE PORTABLE COMPANION December 1982/January 1983

taLL BTBET $READ THE TRACK CHOICE sTR KSEC $RESTORE SECTOR
5TA KTRK {STORE CHOICE IN KTRK LDA SDMA $6ET SAVED BUFFER LOC. (LSB)
Jmp COMM s1a KDMA $RESTORE BUFFER LOC. (LSB)
f LbA SDMA+1 36ET SAVED BUFFER LOC. (mMSB)
¥ SUBROUTINE TO CHANGE THE SECTOR sTA KDMA+ 1 1RESTORE BUFFER LOC. (MSH)
3 . mp COMM
CHSECs LXI D, P3 {SEND THE PROMPT]
CALL STRSND aulT: Jmp 2000+
caL BYGET sREAD THE SECTOR CHOICE i
sTA KSEC $STORE CHOICE IN KSEC 3 START OF THE DATA BLOCK:
Jmp comm 3 .
' KDRV: DB 1
5 SUBROUTINE TO CHANGE THE BUFFER KTRK: DB @
} STARTING LOCATION KSEC: DB @
i KDMA: DW Q62N
CHDMA: LXI D, Pa $SEND THE PROMPT SDRV: DR 1
caLL STRSND STRK: DB []
CALL BTGETY $GET THE MSB OF THE CHOICE SSEC: DB Q
sTR KDMA+1 $STORE IT IN KDMA+1 SDMA: DW O622H
CALL BTGET 3GET THE LSB OF THE CHOICE PES: DB 13, 19, ' READ ERROR', 13,18, 's*'
sSTA KDMA $STORE 1T IN KDMA STRts DB 13,10, SELECTED PARAMETERS:®
Imp comm DB 19, 18, 13, *SELECTED DRIVE 1S: *,'s®
3 STR2: DB 13,1@,*SELECTED TRACK 1S: * '8!
3 SUBROUTINE TO READ A BYTE FROM THE KEVEBOARD STR3: DB 13,19, SELECTED SECTOR 1S: ','e
3 STR&r DB 13,10, *BUFFER STRRTING RDDRESS IS: ','s®
BTGET: MVl c,t $READ 1 CHARACTER P1s DB 13,19, WHICH DRIVE (A OR B)?7,13,10,'s’
caLL N'tRY p2; DB 13,10, "WHICH TRACK (IN 2 DIBIT HEX PLEASE)?Y,13,10,'®
caLL BKVRT $CONVERT IT TO R HEX NUMBER P3: DR 13,19, "WHICH SECTOR (IN 2 DIBIT HEX PLERSE)??,13,13,'8'
PUSH PSW {SAVE 1T [:I7) DB 13, 19, *BUFFER STARTING ADDRESS: °,13,10,'s$’
nvI Cy1 $READ NEXT CHARRCTER P52 DB 13, 1@, ' HOW mANY SECTORS DO YOU WANT TO WRITE??
CALL NTRY DB 13,1@,' (2 DIGIT HEX OLEASE)',13,10,'s’
caLL BKVRT ;CONVERT IT TO A HEX NUMBER PE3 DB 13,10, HOW MANY SECTORS DO YOU WANT TO READ?®
MoV L, R $SAVE 1T IN L DB 13,1@,' (2 DIGIT HEX PLEABE)',13,10,°$’
POR pPSK sREGET FIRST CHARACTER CMENUs DB 13,19, 10, 19, ' COMMAND-MODE : OPTIONS', 13,10,10
RLC §MULTIPLY IT BY 16 DB " A=CHANGE DRIVE®, 13,10
RLC DB * B=CHANGE TRACK', 13, 1@
RLC DB ?C=CHANGE SECTOR',13, 1@
RLC DE Y D=CHANGE BUFFER STARTING RDDRESS', 13,10
ANT 11110000B $ZERD THE LOW NYBBLE DB 'E=PRESERVE PARAMETERS?, 13, 12
ADC L $ADD IT TO THE OTHER CHARACTER DB 'F=RESTORE PARAMETERS', 13, 1@
RET DB ‘G=READ SECTOR(S) FROM DISK TO BUFFER', 13,10
' DB 'H=WRITE SECTOR(S) FROM BUFFER TO DISK',13,10
3 BUBROUTINE YO CONVERT AN ASCII CHARACTER INTO DB Y I=JUMP TD DDTY, 13, 1@
3 A HEX DIGIT DE » J=RETURN TO CP/M COMMAND MODE', 13,10, 10
H DE e
BHVRT: CPI A1H sIF THE CHARACTER 1S A NUMBER... JMPTBL: DW CHDR
Jc BKNUM 3 Jump AHEAD DW CHTRK
5U1 37H jOTHERWISE SUBTRACT 37H Du CHSEC
RET D CHDMA
BMNUM: SUT 30H $SUBTRACT 30H FROM IT] SAVPR
RET DW RESPR
s . bW READ
3 SUBROUTINE TO SAVE THE PARAMETERS Du WRITE
I bW DDTG0
SAVPR: LDA KDRV 38ET DRIVE CHOICE DW QUIT
STA SDRV $SAVE DRIVE CHOICE puW comm
LDA KTRK $6ET TRACK CHOICE Dw coMMm
sTA STRK $SAVE TRACK CHOICE DW COoMMm
LDR KSEC 3GET SECTOR CHOICE by Comm
sTA B8SEC §SAVE SECTOR CHOICE Du coMm
LDA KDMA s6ET BUFFER LOCATION CHOICE (LSB) W coMm
sTA SDmA 3SAVE BUFFER LOCATION CHOICE (LSB) DwW COMM
LDA KDMA+1 ;BET BUFFER LOCATION CHOICE (MSB) ow comm
STA SDMA+1 $SAVE BUFFER LOCATION CHOICE (MSB) DW coMm
Jmp Comm D comm
3 DwW comm
3 SUBROUTINE WHICH RESTORES THE PARAMETERS DW comm
' SAVED BY SAVAR DwW comm
3) Dy COMM
RESPR: LDA SDRV 3GET SAVED DRIVE Dvi COmMm
STA KDRY $RESTORE DRIVE DW comm
LDA STRK $GET SAVED TRACK DW comm
sTR KTRK $RESTORE TRACK D comm
LDA SSEC 1GET SAVED SECTOR END

December 1982/January 1983 THE PORTABLE COMPANION §3

