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The timedependent probability amplitudes of a general multilevel system can be obtained analytically as power series in 
the pulse area for quasimonochromatic pulses with special envelope shapes in the rotating-wave approximation. Closed-form 
solutions can also be found for some cases of interest. These solutions are useful in evaluating the correctness of the adia- 
batic approximation and in illustrating the dependence of the intramolecular relaxation time on the conditions of excitation. 

In view of the importance of nonlinear phenomena 
in contemporary physics, exact solutions of the time- 
dependent Schrbdinger equation are of considerably 
greater interest than the perturbative solutions that 
have played a major role in the past. In this article we 
describe a new method of obtaining the solution to 
the time-dependent Schrodinger equation in the ro- 
tating-wave approximation in terms of a power series 
in the area of a quasimonochromatic pulse, the enve- 
lope amplitude of which either increases exponential- 
ly in time or initially increases exponentially and 
then approaches a constant value. This method is no- 
tably different from other techniques of exact solu- 
tion of the rotating-wave Schrodinger equation such 
as the method of dressed states, in which the envelope 
amplitude is assumed either to be constant after an 
initial sudden turning on of the field [I] or to vary 
adiabatically slowly [2]. 

We have obtained new closed-form analytic solu- 
tions in terms of known elementary or special func- 
tions for several systems of interest in quantum op- 
tics. Further, the exponential pulse solution (EPS) 
(for a pulse that rises indefinitely) and the semiexpo- 
nential pulse solution (SEPS) (for a pulse that rises to 
a constant limiting amplitude) are valid for, and in 
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fact interpolate between, both strong and weak fields. 
As a result, a rigorous evaluation of the correctness of 
the sudden approximation [ 1,3] or the adiabatic- 
following approximation [2] may be obtained. Such 
a comparison is of considerable interest for problems 
in molecular multiple-photon excitation (MPE) [l] 
and laser pulse-propagation phenomena in molecular 
gases [2]. Our exact solutions of the time-dependent 
Schriidinger equation are also useful in calculating the 
intramolecular relaxation time as a function of the 
conditions of excitation for a system consisting of 
one lower level and many nearly degenerate upper 
levels. 

Consider a multilevel system, the time dependence 
of which is determined by the hamiltonian 

fw = f$l - am, (1) 

where Ho is the unperturbed hamiltonian (which we 
assume to be diagonal), /J is the matrix of the dipole 
operator, and E(t) is an applied electromagnetic field. 
In this paper we confine our attention to systems that 
may be described by a state vector $, the time evolu- 
tion of which is governed by the Schrddinger equa- 
tion 

W ldt = --W W. - E(W) 4. 

When 

(2) 
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E(t) = E&) cos (at) (3) 

where EO(t) is slowly varying on the time scale w -1 , 
and when the frequency w of the driving electromag- 
netic field is not far from the resonant transition fre- 
quencies of the system, the rotating-wave approxima- 
tion [l] yields the equation of motion 

dT/dt = i(6 + e(Q);, (4) 

where a typical element of the vector 5 is (J), = 
exp[tin(m)wt] ($), (where n(m) is the integer such 
that the energy E,,, of the state lm> is nearest to 
n(m)hw). A typical element of the (diagonal) matrix 
of detunings is 6, m = [n(m)ho -Em ] /Fi ; we have 
let e(t) = E,,(t)/2fi: In the remainder of this paper we 
consider a pulse with the envelope 

f(T) = 
XT 

1 + (h/e,)7 ’ (5) 

where X is the initial (logarithmic) rate of rise 
(= e-l de/dt) of the pulse envelope, and E, is the 
limiting am,plitude as r -+ m. A solution of the Schro- 
dinger equation (4) for this e(t) with a finite E, is a 
SEPS. The special case E, gives an indefinitely rising 
exponential pulse (EPS). The time dependence of a 
semiexponential pulse is shown in fig. 1. The new 
“time” variable r in (5) is defined as 

7= 
s 

e(t’) dt’, (6) 
--CD 

LFIMBDQ x TIME %10-l 

Fig. 1. Time dependence of the semiexponential pulse (5) as 
a function of the dimensionless variable hf. The ordinate is 
c(t)/em for the case h = em. 

where the pulse area [4] for a two-level system is 
pol 7. For an exponential pulse At = ln(Xr/eo), while 
for a semiexponential pulse xt = ln(Xr/e,) t @r/e,) 
- 1. The equation of motion (4) takes on the simple 
form 

dT/dr=i[(l/Xrt l/e,)6 tp]T. (7) 

Eq. (7) is amenable to a series solution in powers of r: 

(8) 

where the vectors yr obey the recurrence relation 

Tr+l = i[(r + 1)l - (i/h)6]-l(p +S/e,)Fr;, (9) 

and where we have assumed that SJ(r = 0) = 0. The 
latter condition is automatically fulfilled if the sys- 
tem is initially (at t = --) in the ground state. The 
series (8) converges for all T, since for sufficiently 
large r, Sr+I = i(r + 1)-l@ t 8/e,)Tr. In many cases 
the convergence is also sufficiently rapid for (8) to 
be of practical utility. The fundamental reason for 
the condition ST(r = 0) = 0 is that the transformation 
(6) compresses the infinite interval [--, t] into the 
tmite interval [0, T(t)] ; any initial state for which 
6 $(r = 0) # 0 would experience infinitely many oscil- 
lations in this interval, and hence would not be de- 
scribable as an analytic function of r. By a suitable 
unitary transformation of the 5, it is possible to 
make any one of the diagonal elements of the trans- 
formed 6 vanish, so that any one of the states in which 
Ho is diagonal may be taken as the initial state. 

The coefficient vectors Jr in (8) can be found 
analytically for several systems of interest. For the 
purpose of numerical calculations eq. (9) is equally 
easy (or difficult) to handle for a finite or infinite 
value of e, . From an analytical point of view these 
two cases are quite different, since the structure.of 
the matrix 1-1 t 6 /e, leads to considerably more com- 
plications than are encountered with the matrix /.I 
alone. We have found a SEPS (E, finite) in closed 
form for the two-level system; this result will be given 
below. A closed-form EPS (E, = -) is known for non- 
degenerate two- and three-level systems; for (1, N) 
systems consisting of a nondegenerate ground state 
and an upper state with N nearly degenerate sublevels 
(fig. 2); and for a system with a nondegenerate ground 
state linked radiatively to a continuously degenerate 
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EXCITATION OF A (I,N) SYSTEM 

Fig. 2. (1, N) system for which an EPS has been obtained. 

upper state by a lorentzian distribution of transition 
strength. 

The SEPS for the ground-state component of a 
two-level system initially (at t = --) in the ground 
state is 

(5(r))o = exp(i{-r)M(ip{-/2a, -ip; 2iar), (10) 

where M is the confluent hypergeometric function; 
~0~ is the dipole matrix element; A = w - (El - Eo)/fi 
is the detuning of the laser frequency from resonance; 
cx = [(A/~E,)~ + (~~~/2?z)~] ‘j2 is one-half of the 
eventual population Rabi frequency times (e-)-l ; 
p = A/x is the ratio of the detuning to the pulse-turn- 
on rate; and {, = lA/2e, 1 + CY are the eventual fre- 
quencies of the amplitudes of the upper (or lower) 
dressed states I+>. 

In order to assess the validity in this case of the 
adiabatic approximation, in which one assumes that 
the system remains in the lower dressed state I-) 
which is correlated with the initial (ground) state at 
T = -00 [2], we calculate the limiting probability for 
the system to be found in 1-j at r = 00. The absolute 
value of this limiting amplitude, which must be nearly 
unity for the adiabatic approximation to be valid, is 

IceI2 = [1 -ew(-w~~+/~)l/[1 -ev(-2w)l. (11) 
Now 

<+/a= 1 + [l +(j~~~e,/A)~]-~‘~ = 1 +b, (12) 

where b = 0 for fields that are sufficiently strong 
that the resonant (population) Rabi frequency pol E, 
is large compared to the detuning A. For fields that 
are strong in this sense a necessary and sufficient con- 
dition for validity of the adiabatic approximation is 
therefore 

exp(-rrp) < 1 (strong fields). W) 
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The condition p = A/x 9 1 has previously been identi- 
fied as the condition for validity of the adiabatic ap- 
proximation for weak fields, as the result of an analy- 
tic calculation based on first-order perturbation theory 
[4]. For an eventual field strength E, such that 
pole- is small compared to A, one finds from (11) 
that {+/01x 2 - (~~~e-/A)~/2; from (12) it then fol- 
lows that the criterion for adiabaticity is 

1 - lc-12 = lc+12 =a[exp(2np) - 11-l < 1 

(weak fields) (1W 

wherea =e~p[~~~e,/A)~/2] - 1 =(~~~e~/A)~/2. 
It follows from (13b) that the probability of the dress- 
ed state I+) that is not reached adiabatically from the 
initial (ground) state will not exceed a if p > (ln 2)/ 
27r = 0.11. If p Q 1, (13b) can still be satisfied, 
provided that 

a(27rp)-’ < 1 (weak field, rapidly switched on). 
(13c) 

According to eqs. (13) the adiabatic approximation 
will be satisfied in the two-level SEPS if the pulse is 
switched on slowly on the time scale A-’ (i.e. if 
p 3 l), regardless of the eventual field strength. The 
adiabatic approximation is also valid for a sufficient- 
ly weak rapidly-switched-on pulse, according to (13~). 

For a second example, we give the EPS for a sys- 
tem consisting of one lower level and several upper 
levels that may be discrete or continuous, and that 
are indexed by the variable A, meant to represent a 
detuning. The upper levels have densityg(A) and the 
dipole matrix elements are p(A). We find fro_m (9) 
that the lower-state probability amplituce ($)o(r) 
contains only even terms>n r and that ($2Cn+1))0 
can be computed from (+h)o: 

1 
(‘2(n+1))o =-2(n+ 1) 

where 6,, = A + s is the detuning of the upper 
state; s is the detuning of the center of the upper- 
level distribution from resonance. 

This subsumes several cases of interest. For a non- 
degenerate two-level system, we have p2(A)g(A) = 
pils(A) (where &(A) is a Dirac delta function) so 
that (14) reduces to 
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1 dl - 
(~2(n+lh = - 2(n + 1) 2n t 1 -i/sX (G2n)o. 

In the case s = 0 (on resonance) this reduces further to 

41 N 
(hn+lh = - qn + I)(& + 1) (ti&o, 

which in turn implies that 

w)o = cm 0101)~T (15) 

a resonant Rabi solution of the two-level system for a 
time-varying pulse [ 51. 

The (1, N) system consisting of one lower and N 
upper levels, with transitions allowed only between 
the lower and upper levels (but not among the upper 
levels) is the prototype for discussions of a single 
level 10) interacting with a quasicontinuum or a real 
continuum of other levels 11, a). As such, it is of in- 
terest not only in MPE [ 1 ] but also in other areas, 
such as radiationless transitions in polyatomic mole- 
cules [6]. For a (1, N) system (14) reduces to 

=-L c 
( 

l-&t4 - 
2(n+l) a 212 + 1 -(i/A)@(a) ts) 1 (Q2n)o 3 

(16) 
where 6, = d(a) + s. 

Finally, we illustrate the utility of the EPS even in 
the case of a continuous distribution of levels such 
that p2g is a lorentzian: 

2 

p’(A)g(A) = a3 ~ 
1 

rr A2 tu2’ 
(17) 

Then (14) is integrable and 

(+2(n+l))o 

1 1 
= - ~ 41 2n t 1 - (i/h)(s + io) 2(n + 1) (G2n)o. (18) 

Thus the ground-state amplitude is exactly that of a 
two-level system with a complex detuning consisting 
of the real detuning plus i times the width of the 
lorentzian. In the special case s = 0 (on resonance) 

and u = 2X (18) implies that 
1 

(N~>>o = (POIC sin ~017 (19) 

Remarkably, the series (8) can also be resummed 
exactly using the full EPS (1 S), with the result that 
the ground-state amplitude of a system with a level 
density and transition-moment distribution obeying 
(17) is proportional to a Bessel function of complex 
order: 

where a! = -i(s + ia)/ and 7 = ~01EoeU/(2hX). This 
result is shown graphically in fig. 3 for three different 
values of u/h, giving undamped, slowly damped and 
rapidly damped Rabi oscillations. 

The exact solution (20) provides an interesting 
opportunity to study intramolecular relaxation (IMR) 
[6-91. The IMR time is usually defined as the decay 
time of the nonstationary state produced by optical 
excitation of a (1, N) system (fig. 2) ([9], fig. 1) or 
the limiting case of a continuum of upper levels. The 
IMR time tI is also the decay time of the expectation 
value of an off-diagonal observable such as the dipole 
moment /J [6,8]. The latter interpretation of t1 is 
intuitively appealing because a nonzero expectation 
value of an off-diagonal observable is associated with 
coherence [lo], while a zero expectation value is of- 
ten taken to imply incoherence. In the case of a 
(1, N) system the dipole expectation valze (cc) is ap- 
proximatly equal to the decay time of ($J(?))~ (20). 

Dl 

Fig. 3. Time dependence of the lorentzian-continuum EPS 
(20). In all cases s/h = 0.025 and wolEo/(2fih) = 4.0. (a) u/h 
= 0 (two-level system);(b) o/h = 0.25; (c) a/h = 3.0. 
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For resonant excitation (s = 0) and for integer values 
of (o - 1)/2 E u, (20) implies that 

(21) 

where j, s is the sth zero of J,(x). All dependence on 
the widih of the distribution (u) is now contained 
in the dependence of jy,s on v = (u - X)/2X. Consider 
IMR in the limit of an upper “band” that is broad 
compared to the reciprocal of the switching-on time 
(i.e., u %- X). The asymptotic form for jy,s [ 1 l] in 
these limits gives the result j,, = (2/3)(+z,)3/2 ;which 
is completely independent of u and hence of a; a, is 
the sth negative zero of the Airy function Ai(x Thus 
in the limit u/h 3 1, there can be IZO strong depen- 
dence of the IMR rate on the width u of the upper 
“band”, a conclusion that differs appreciably from 
the rather common intuition that the IMR time for 
an upper “band” obeying (17) ought to be of the or- 
der of u-l. The physical reason why the IMR rate in 
this case is nearly independent of u is that when u 
% h only a subset of states spanning a frequency 
interval of order h is effectively pumped by the ex- 
ponential pulse. A simple calculation shows that in 
fact t1 = X-l In (?;/7u), where (T(@O))o = 0.1 and 
(T(71))o = 0.9 are taken as a reasonable definition of 
the beginning and end of the process of IMR. Thus 
the IMR time tI in this case depends primarily on the 
conditions of excitation (i.e. on X) and only weakly 
on the width of the upper band of levels (u), in agree- 
ment with the general arguments advanced in [8]. 

In conclusion, we have demonstrated a new 
method for solving the time-dependent Schriidinger 
equation in the RWA that is numerically convenient 
and that leads to new closed-form solutions in several 
physically important cases. We have used some of the 
closed-form solutions to discuss aspects of the adia- 

batic approximation and intramolecular relaxation 
that are of current interest in quantum optics. 

We thank Brett D. DePaola for a helpful discussion. 
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