
The Birds Project

The newlib-1.9.0 Library, Plan for
Software Aspects of

Certification
Ronald S. Burkey, et al.

Version 0.01
02/24/02

Copyright © 2002 by Ronald S. Burkey and Red Hat, Inc.

Licensing information: Permission is granted to make and distribute verbatim copies
of this documentation, provided the copyright notice and this permission notice are
preserved on all copies. Permission is granted to copy and distribute modified
versions of this documentation under the conditions for verbatim copying, provided
also that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one. Permission is granted to copy and distribute
translations of this documentation into another language, under the above conditions
for modified versions.



1. Purpose of the PSAC Document
This is a standard "Plan for Software Aspects of Certification" document,
corresponding to the guidelines in RTCA DO-178B. It describes the general
characteristics of the system and its software, certification considerations, life cycles
and life-cycle data, and scheduling of the software-development effort.

2. System Overview

2.1. Overview of the System
The newlib-1.9.0 library is intended to be a C-language library of code which has been
pre-certified under DO-178B, and which is therefore available for use as "previously
written software" in building airborne-software applications. It corresponds to a subset
of the standard C function library.

In other words, newlib-1.9.0 is not a complete system, but can be used as a software
component of an airborne system without further development or certification effort,
except (for example) obtaining the signoff of a DER. Note that obtaining the signoff of
a DER who has previously approved newlib-1.9.0 is likely to be most efficient means of
doing so.

The newlib-1.9.0 library software is available for free use by anyone, under the terms
terms set out in the file called "COPYING.NEWLIB" provided with the source code.
Briefly, a developer may link his software to newlib, free of charge, and no particular
licensing modifications need to be made to his own software. However, certain
copyright notices may need to be displayed. COPYING.NEWLIB is reproduced in its
entirety at the end of the PSAC.

Significant portions of the certification documentation have been taken directly from
(or slightly adapted from) GNUpro documentation provided by Red Hat, Inc., and for
this reason the certification documentation is licensed under terms specified by Red
Hat, namely: Permission is granted to make and distribute verbatim copies of this
documentation, provided the copyright notice and this permission notice are preserved
on all copies. Permission is granted to copy and distribute modified versions of this
documentation under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice identical to
this one. Permission is granted to copy and distribute translations of this documentation
into another language, under the above conditions for modified versions.

1



The newlib-1.9.0 Library, PSAC

The newlib-1.9.0 library is commercial off-the-shelf software (COTS) that was not
explicitly written for airborne applications, and therefore is not certifiable per se as
obtained directly from its distributer, Red Hat, Inc. The present development effort is
an attempt to provide satisfactory documentation and software verification for a
specific version of the newlib library, namely version 1.9.0.

Other embeddable C libraries could have been chosen for this project in place of Red
Hat newlib. The choice of newlib for this project reflects the following philosophical
criteria:

1) To supply a minimal C-callable API appropriate for writing simple embedded
airborne applications. The API should include things such as file-system functions,
string manipulation functions, timekeeping functions, and so forth.

2) To retain maximal portability from CPU type to CPU type, with a minimum porting
effort.

3) To use mature software that has been deployed in thousands of prior (though
non-airborne) projects, and hence for which the rate of development and new-bug
discovery has reached low levels.

2.2. System Functions

2.2.1. Standard Utility Functions

2.2.1.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the stdlib.h header file.

2.2.1.2. Hardware-Software Allocation

This functionality is provided entirely in software.

2.2.2. Character Type Macros

2.2.2.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented

2



The newlib-1.9.0 Library, PSAC

by the ctype.h header file.

2.2.3. Input and Output

2.2.3.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the stdio.h header file.

2.2.4. Strings and Memory

2.2.4.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the string.h header file.

2.2.5. Signal Handling

2.2.5.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the signal.h header file.

2.2.6. Time Functions

2.2.6.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the time.h header file.

3



The newlib-1.9.0 Library, PSAC

2.2.7. Locale

2.2.7.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented
by the locale.h header file.

2.2.8. Reentrancy

2.2.8.1. Description

The library functions ensure that, whenever possible, there is reentrancy. However,
there are some functions that can not be trivially made reentrant. Hooks have been
provided to allow these functions to be used in a fully reentrant fashion. These hooks
use the structure, _reent, defined in reent.h.

All functions which must manipulate global information are available in two versions.

The first version has the usual name, using a single global instance of the reentrancy
structure.

The second has a different name, normally formed by prepending _ and appending _r
and taking a pointer to the particular reentrancy structure to use.

2.2.9. System Calls

2.2.9.1. Description

In case the operating system (if any) provides functionality not directly provided by
newlib-1.9.0, the library provides means of making a system call to the operating
system.

2.2.10. Variable Argument Lists

2.2.10.1. Description

This is a subset of the functionality (familiar to C-language programmers) represented

4



The newlib-1.9.0 Library, PSAC

by the stdarg.h and varargs.h header files.

2.2.11. Miscellaneous Macros and Function Calls

2.2.11.1. Description

Additional functionality not present in the standard C library may also be provided.

2.3. System Architecture
Because the newlib-1.9.0 library is intended to be as portable as possible, it requires no
specific system architecture.

For example, no specific requirements on the quantity or address range of RAM is
made.

Furthermore, the newlib-1.9.0 library has no specific dependence upon, or knowledge
of, specific hardware peripherals that may or may not be present within the system. All
low-level access to such functionality occurs through driver functions provided outside
of newlib-1.9.0 itself.

2.4. Processors
The newlib-1.9.0 library as distributed by Red Hat, Inc., supports a wide variety of
CPU types and operating systems. However, the initial airborne certification effort for
newlib-1.9.0 supports only the following CPU/operating-system combinations:

Intel ’x86 CPU family without operating system.

PowerPC without operating system.

Motorola Coldfire without operating system.

Motorola Coldfire with RTEMS operating system.

Hopefully, later versions of newlib-1.9.0 will contain other CPU/operating-system
combinations.

By "without operating system", we mean that use of those functions in the newlib-1.9.0
library dependent on the presence of an operating system is disallowed. There may still

5



The newlib-1.9.0 Library, PSAC

be an operating system of some kind present, but newlib-1.9.0 interaction with it is not
supported.

2.5. Hardware-Software Interfaces
As may be deduced from the descriptions of the hardware-software allocations in the
’System Overview’ section, newlib-1.9.0 as such has no dependence on or knowledge
of the hardware.

Instead, there is a hardware-abstraction layer (HAL), whose functions are defined in the
newlib-1.9.0 design data, but which are actually provided by separately (if used). These
are separate from newlib-1.9.0, and have life cycles separate from newlib-1.9.0.

2.6. Safety Features
Because newlib-1.9.0 is a reusable library rather than a complete system, it does not
attempt to provide safety features as such.

3. Software Overview

3.1. Resource Sharing
All functions in the newlib-1.9.0 are reentrant (except as specified in their specific
descriptions, in which case reentrant alternatives are generally provided), and hence are
suitable for use in conjunction with multi-tasking operating systems such as RTEMS.

Since newlib-1.9.0 is a general-purpose, portable, reusable library, no specific
statements can be made about its memory requirements or CPU time requirements.

3.2. Redundancy
Not relevant, since newlib-1.9.0 is a reusable library rather than a complete system.

6



The newlib-1.9.0 Library, PSAC

3.3. Multiple-Version Dissimilar Software
Not used by newlib-1.9.0.

3.4. Fault-Tolerance, Failure Detection, and Safety
Monitoring

Not provided by the newlib-1.9.0 library.

3.5. Software Timing and Scheduling Strategies
Since newlib-1.9.0 is a general-purpose portable library without knowledge of
underlying hardware, it does not in itself impose any requirements on software timing
nor scheduling. However, certain newlib-1.9.0 functionality does indirectly relate to
timing requirements. For example, the time function, which returns the current time,
depends indirectly on the existence of a hardware real-time clock or the existence of an
accurate software timer (presumably implemented via an interrupt-service routine).
However, this relationship between newlib-1.9.0 and the actual timing mechanism is
mediated by the Hardware Abstraction Layer not present within newlib-1.9.0 itself
(i.e., which must be provided separately from newlib-1.9.0). Therefore, no specific
requirements or other statements regarding software timing can be made.

4. Certification Considerations

4.1. Software Level and Means of Compliance
The software is suitable for certification via RTCA DO-178B at level C.

4.2. Justification of Software Level
Since newlib-1.9.0 is a reusable library, rather than a complete system, it requires no
safety justification as such.

7



The newlib-1.9.0 Library, PSAC

4.3. Potential Software Contributions to Failure
Conditions

Because the conditions of use of newlib-1.9.0 cannot be known (it may be used in
developing software for any software of level C, D, or E), there is no way to know how
newlib-1.9.0 may potentially contribute to failure conditions. There is no justification
for using newlib-1.9.0 in developing software at levels A or B with the present
certification materials.

5. Software-Component Life Cycles
For this project, there is only one software component, namely the newlib-1.9.0 library,
and hence only one life cycle.

5.1. Life Cycle of newlib-1.9.0 Library Development

5.1.1. Life-Cycle

Because the newlib-1.9.0 development effort described here represents the creation of
certification materials for pre-existing COTS software, the development processes and
their ordering are somewhat out of the ordinary.

From the standpoint of the present development effort, the life cycle of the newlib-1.9.0
library began with the Coding Process. Explanation: While equivalents to Planning
Processes, Requirements Processes, or Design Processes may have been undertaken by
the various individuals and organizatons which have provided the actual software, there
is no accessible, satisfactory documentation for such processes. Consequently, for the
purposes of this project, it must be assumed that these additional processes did not
actually occur. Similarly considerations apply to Software Verification Processes.

So, to reiterate: The life cycle of the newlib-1.9.0 library begins with the Coding
Process. The Coding Process is followed by the Planning Process. The Planning
Process, in turn, is followed by three separate chains of development processes that
occur roughly simultaneously. One chain consists just of the SCM Process. Another
chain consists just of the SQA Process. The third chain consists of the Requirements
Process, Design Process, and Software Verification Process. For brevity, the latter will
be referred to hereafter as the "RDIV chain".

8



The newlib-1.9.0 Library, PSAC

Because we are merely attempting to certify pre-developed software, some of the
development processes are rather abbreviated. For example, the SCM process needs
merely to archive the newlib-1.9.0 library (not to provide for further development of it)
and to manage the life-cycle data. The Planning, Requirements, and Design processes
need merely to document work which has already been done. There is no Integration
Process as such, because (newlib-1.9.0 being a reusable, hardware-independent library)
there’s nothing to integrate. On the other hand, the Software Verification Process is as
extensive as for any other development effort.

Upon completion of the development effort, which is the release of the software by the
SQA Process, life cycle data is available for input to a Certification Liaison Process.
However, the Certification Liaison Process is really outside of the scope of the
newlib-1.9.0 development effort, since the software produced is merely a reusable
library and not a complete system.

Although not possible for the first newlib-1.9.0 release, due to non-availability of
personnel, it is hoped that subsequent releases can be reviewed by DER as part of the
development effort, allowing very rapid signoff of form 8110 for developers using the
newlib-1.9.0 library. If this capability becomes available, it will form part of the
Certification Liaison Process.

9



The newlib-1.9.0 Library, PSAC

Figure 1. Life Cycle Summary

Planning
Process

Requirements
Process

Design
Process

Coding
Process

Integration
Process

Software
Configuration
Management

Process

Software
Quality

Assurance
Process

Certification
Liaison
Process

Software
Verification

Process

5.1.1.1. Life-Cycle Processes

5.1.1.1.1. Planning Process

The Planning Process precedes all other life-cycle processes, except the Coding
Process. (The Coding Process is first, since the newlib-1.9.0 development effort merely
attempts to certify pre-written COTS software.) The Planning Process produces or
identifies all other Plans or Standards guiding the remainder of the
software-development effort. The specific aim of the newlib-1.9.0 Planning Process is
to address all of the issues outlined in DO-178B section 4.0.

10



The newlib-1.9.0 Library, PSAC

5.1.1.1.1.1. Transition Criteria and Satisfaction of Objectives

The Planning Process is followed by three separate chains of life-cycle processes, with
the three development chains running simultaneously in parallel. These chains are the
SCM Process, the SQA Process, and the RDIV chain (see the ’Life-Cycle’ section).
The transitions from the Planning Process to these development chains do not
necessarily occur simultaneously.

The Planning Process transitions to the RDIV chain when the PSAC, SDP, SVP, SECI,
SRS, SDS, and SCS documents have all been successful reviewed and signed off.

Subsequent changes to these documents may require a return from the Design Process
or Software Verification Process to the Requirements Process, but the Planning Process
is never re-entered in any given life cycle.

The Planning Process transitions to the SCM Process upon successful review and
signoff of the SCMP.

The Planning Process transitions to the SQA Process upon successful review and
signoff of the SQAP.

5.1.1.1.2. Requirements Process

The purpose of the Requirements Process is to elucidate the existing newlib-1.9.0
software as an easy-to-grasp set of the high-level software requirements. In the case of
newlib-1.9.0, this is essentially a listing of the various groups of C-language functions
provided by the library. However, the intention of the newlib-1.9.0 Requirements
Process is to address all of the issues outlined in DO-178B section 5.1.

The Requirements Process also addresses all considerations of DO-178B section 6.3.1,
which according to DO-178B may form a part of the Software Verification Process.
This can be done because at the proposed software level (’C’), there is no requirement
of independence.

5.1.1.1.2.1. Transition Criteria and Satisfaction of Objectives

The Requirements Process transitions to the Design Process upon successful review
and signoff of the SRD.

11



The newlib-1.9.0 Library, PSAC

5.1.1.1.3. Design Process

Since the newlib-1.9.0 software is pre-existing, the main purpose of the Design Process
is to detail the API definition of the various C-language functions provided by the
library. However, all of the issues outlined in DO-178B section 5.2 are addressed.

The Requirements Process also addresses all considerations of DO-178B sections 6.3.2
& 6.3.3, which according to DO-178B may form a part of the Software Verification
Process. This can be done because at the proposed software level (’C’), there is no
requirement of independence.

5.1.1.1.3.1. Transition Criteria and Satisfaction of Objectives

The Design Process transitions to the Integration Process upon successful review and
signoff of the SDD.

5.1.1.1.4. Coding Process

Since this development effort is an attempt to certify pre-existing software, there is not
really a Coding Process as such. Or, more accurately, there was a Coding Process
requiring a number of years to complete, but the details of this process are inaccessible
to the current development effort. The current development effort, as a philosophical
decision, will not modify any newlib runtime source code.

Test code not present in the Red Hat newlib v1.9.0 release, on the other hand, may be
provided by this project.

5.1.1.1.4.1. Transition Criteria and Satisfaction of Objectives

The completion of the Coding Process in this development effort is a given. Real
development effort begins with an essentially automatic transition to the Planning
Process.

5.1.1.1.5. Integration Process

The purpose of the Integration Process is to integrate the software with the target
hardware. Since the aim of the newlib-1.9.0 project is to produce a highly portable
library, rather than a hardware-specific library or a physical device, there really can be
no required Integration Process.

12



The newlib-1.9.0 Library, PSAC

For any given target architecture, the general-purpose newlib-1.9.0 library is combined
with a specific Hardware Abstraction Layer functions specific to that target. It is in the
Integration Process of the hardware-abstraction layer life cycle or the application code
life cycle (both of which are independent of newlib-1.9.0) that the integration occurs.

5.1.1.1.5.1. Transition Criteria and Satisfaction of Objectives

The Integration Process proceeds directly to the Software Verification Process without
any effort whatever.

5.1.1.1.6. Software Verification Process

In the words of DO-178B section 6.1, "The purpose of the software verification process
is to detect and report errors that may have been introduced during the software
development processes." The newlib-1.9.0 Software Verification Process attempts to
address all of the issues outlined in DO-178B chapter 6, except the following:

1) The Requirements Process addresses all considerations of DO-178B section 6.3.1.
This can be done because at the proposed software level (’C’), there is no requirement
of independence.

2) The Design Process addresses all considerations of DO-178B sections 6.3.2 & 6.3.3.
This can be done because at the proposed software level (’C’), there is no requirement
of independence.

3) Reviews and analysis of the outputs of the Integration Process (DO-178B section
6.3.5) are not addressed here (or elsewhere) since the entire Integration Process is
optional. Refer to the ’Integration Process’ section of the PSAC for further explanation.

5.1.1.1.6.1. Transition Criteria and Satisfaction of Objectives

The Software Verification Process has several outputs:

a) Review and analysis of the source code.

b) The SVCP.

c) Review and analysis of the test results.

d) The software-test results themselves.

The Software Verification Process can transition to various other life cycle processes:

1) To the SQA Process upon successfully creating all Software Verfication Process
outputs.

13



The newlib-1.9.0 Library, PSAC

2) To the Coding Process upon detection of errors in software testing.

3) To the Requirements Process or Design Process upon detection of errors more
appropriately resolved in the SRD or SDD than in the code.

5.1.1.1.7. Software Configuration Management Process

The Software Configuration Management Process (or just ’SCM Process’) for the most
part operates simultaneously with the other life cycle processes. DO-178B chapter 7
sets out the objectives and activities of the SCM Process in some detail. In summary,
the SCM Process provices the following activities:

1) Identifying configurations.

2) Implementing change control.

3) Establishing baselines.

4) Archiving the software and the life cycle data.

Though for graphical reasons the figure at the top of the ’Life-Cycle’ section of this
document depicts the SCM Process as spanning merely the Requirements, Design, and
Coding Processes, it actually spans all other life cycle processes, and beyond. Once
data is archived by means of the SCM Process, it is theoretically intended to remain
archived as long as the newlib-1.9.0 software is present within any airborne units.

Of course, since the Birds Project is not a manufacturer of airborne equipment, and the
newlib-1.9.0 library is intended to be used by manufacturers of such equipment, it is
not really within the capability of the Birds Project to guarantee this essentially
indefinite data retention. It is therefore assumed that users of the newlib-1.9.0 library
have prudently archived the version of newlib-1.9.0 they are using -- i.e., all code and
life-cycle data -- within the SCM Processes of their own development efforts.

5.1.1.1.7.1. Transition Criteria and Satisfaction of Objectives

The SCM Process does not transition to other life cycle processes, since it operates in
parallel with such other processes.

Ultimately, the SCM Process exists to archive life cycle data, and to perpetually
maintain this archive subject to the limitations described above. The outputs of the
SCM Process are the SCI and the SCM Records demonstrating archival activity. The
SECI, which may legitimately be viewed as an output of the SCM Process, is actually
produced by the Planning Process, but may subsequently be altered by the SCM
Process.

14



The newlib-1.9.0 Library, PSAC

The newlib-1.9.0 SCM Process is slightly simplified over that of a more usual airborne
development effort, in that the software itself is pre-existing and is not modified within
this development effort. Consequently, the only effort really required to archive and
control the software itself, is to save a permanent copy of the software as received from
its distributer, Red Hat, Inc.

5.1.1.1.8. Software Quality Assurance Process

The objectives and activities of the Software Quality Assurance Process (or just ’SQA
Process’) are set out in chapter 8 of DO-178B. Basically, the SQA Process examines
the outputs of the other life cycle processes and determines their internal consistency.
In other words, it acts to assure that what has actually been accomplished is what was
required to be accomplished.

Among the important activities of the SQA Process are these:

1) Establishement and management of the problem-reporting system.

2) Final release of the software.

The SQA Process operates simultaneously with the other life cycle processes, and
spans the Planning Process through release of the software.

The SQA Process, at the proposed software level (’C’), is the only development process
having any requirement of independence. In other words, in a usual development effort
at Level C, one would expect to find the SQA function performed by independent
personnel from those of the other life cycle processes.

However, the newlib-1.9.0 provides an interesting distinction from more-usual
development efforts, in that the software being certified is pre-written and not modified
by this development effort. Furthermore, while the Requirements Process and Design
Processes do provide documentation, this documentation is not of requirements and
design data produced by this development effort, but is merely a corrected form of
pre-written (but non-certification) documentation created independently.

In other words, the SQA function is inherently highly independent from all actual
planning, all actual design, and all actual coding. In light of this, there seems to be
little reason to have a separate person (within the present development effort) perform
the SQA functions than perform the other life-cycle processes. The newlib-1.9.0
development effort can operate as a single-individual project without compromising
independence of the SQA Process in any significant way.

15



The newlib-1.9.0 Library, PSAC

5.1.1.1.8.1. Transition Criteria and Satisfaction of Objectives

The SQA Process transitions to the Certification Liaison Process upon release of the
software. The outputs of the SQA Process are the SQA Records.

The primary output of the SQA Process is the Software Conformity Review, which is
the last step in the release of the software. The Software Conformity Review, however,
takes into account not only the life cycle data in general, but also various other SQA
Records.

5.1.1.1.9. Certification Liaison

Since the product of the newlib-1.9.0 development effort is a reusable library rather
than an actual airborne device, there are really no certification efforts associated with it,
and thus no real Certification Liaison Process.

However, since the intention of the newlib-1.9.0 project is to not merely provide
software but to make it very conveniently usable by developers, a very useful
certification activity would be review and approval by a DER. This "pre-approval" by a
DER would allow immediate signoff of 8110 forms for developers using the
newlib-1.9.0 library, very simply and relatively cheaply.

It is not known as this is written whether such DER activity will actually occur. Hence,
it should be regarded as an optional activity that may be omitted.

5.1.1.1.9.1. Transition Criteria and Satisfaction of Objectives

The outputs of the Certification Liaison Process can be these:

1) Informal notification that a DER finds the life cycle data acceptable and will be
available to sign off (via 8110) upon demand, for a known fee.

2) Notification of life-cycle data problems that will require repair before the DER finds
the data acceptable.

Upon the former (option #1), the Certification Liaison Process ends, but there are no
further processes to which a transition can occur. Of course, the availability of signoff
would be published, so that newlib-1.9.0 users could be made aware of it.

Upon the latter (option #2), problem reports are filed concerning the problems which
have been found. Also, a transition may (or may not) occur to an earlier life cycle
process so that the problems can be fixed. The reason for this uncertainty of action is
that while approval by the DER is a desirable result of the development effort, it is not a

16



The newlib-1.9.0 Library, PSAC

crucially necessary one from the point of view of the Birds Project. These findings are
often a matter of opinion, and a different DER might view the life cycle data differently.

5.1.1.2. Organization

The Birds Project differs from most organizations involved in airborne software
development, in the sense that it is not a commercial organization engaged in
manufacturing a product. Instead, it is an effort to freely provide certification-friendly
materials to the aviation community, as a service. Furthermore, at least at the time of
inception of the newlib-1.9.0 development effort, it is not really "organized" at all and,
indeed, consists of a single individual.

In contrast, the pre-written software which this development effort is attempting to
certify, and the pre-written documentation which has been absorbed and corrected in
this project’s documentation, have been written by a large and unknown assemblage of
individuals, over a period of many years. These individuals have often not been
associated with any clearly definable organization. In particular, even though the
pre-written newlib library, version 1.9.0, is a "product" of Red Hat, Inc., it was not
written by Red Hat, Inc., and very few of the individuals involved are likely to be
associated with Red Hat, Inc.

For these reasons, the organization of the newlib-1.9.0 development effort cannot be
understood in terms of an "org chart" with a neatly defined flow of authority. One must
instead concentrate only on the individuals involved, and even then only on the
individuals involved in the certification effort as opposed to the development of the
actual software.

5.1.1.3. Organizational Responsibilities

As explained earlier, because pre-written software is being certified, it is possible for
the newlib-1.9.0 development effort to operate with a single individual, and still to
maintain the "independence" requirements (see DO-178B Table A-9) at the proposed
software level (’C’).

For the initial release of newlib-1.9.0, this minimum (1 person) is used. For later
releases, more or other personnel may be used. In this section, all personnel involved in
all releases are identified, and their levels of involvement in these releases are made
clear. Because there is no corporate entity providing authority for the development
activities, we also provide brief resumes of participating individuals, so that their
qualifications for their activities are clear.

17



The newlib-1.9.0 Library, PSAC

Personnel for newlib-1.9.0 version 1.00

Ronald S. Burkey has a B.S. degree in Mathematics and a Ph.D. in Physics. He has
been professionally involved in designing electronic hardware and firmware for
airborne applications (and non-airborne applications) since 1984. He has been
responsible for both DO-178A and DO-178B certification efforts.

5.1.1.4. Certification Liaison

Because newlib-1.9.0 is a reusable library rather than a complete airborne product, no
direct interaction with certification authorities is required.

5.1.2. Life-Cycle Data

5.1.2.1. Data Items

Because newlib-1.9.0 is a reusable library rather than a complete airborne product, no
occasion for submission of life cycle data by the Birds Project arises. Rather, all of the
life cycle data items described below are made available to developers wishing to use
the newlib-1.9.0 library, or to anyone else, along with newlib-1.9.0 source code. The
status of this data within the development efforts of newlib-1.9.0 users cannot in
principle be known to the newlib-1.9.0 development effort, and hence cannot be
specified here.

The following items or categories of life cycle data items are created.

The Plan for Software Aspects of Certification (PSAC) is created by the Planning
Process.

The Software Development Plan (SDP) is created by the Planning Process.

The Software Verification Plan (SVP) is created by the Planning Process.

The Software Configuration Management Plan (SCMP) is created by the Planning
Process.

The Software Quality Assurance Plan (SQAP) is created by the Planning Process.

The Software Requirements Standards (SRS) are created by the Planning Process.

The Software Design Standards (SDS) are created by the Planning Process.

The Software Code Standards (SCS) are created by the Planning Process.

The Software Requirements Data (SRD) are created by the Requirements Process.

18



The newlib-1.9.0 Library, PSAC

The Software Design Description (SDD) is created by the Design Process.

The Source Code is created by the Coding Process.

There is no Executable Object Code in general, since newlib-1.9.0 is a reusable library
rather than a complete product. Creation of Executable Object Code is performed by
integrating newlib-1.9.0 with a target-specific Hardware Abstraction Layer, which is
presently visualized as a separate activity from newlib-1.9.0 development itself. For
specific CPU/operating-system types that have been specified as "supported",
Executable Object Code in the form of linkable libraries is provided.

The Software Verification Cases and Procedures (SVCP) and Software Verification
Results (SVR) are created or completed by the Software Verification Process.

The Software Life Cycle Environment Configuration Index (SECI) is created by the
Planning Process, but may be altered by the SCM Process prior to creation of the
Executable Object Code (if any) or transition to the Software Verification Process.

The Software Configuration Index (SCI) is produced by the SCM Process.

Problem Reports are sanctioned and maintained by the SQA Process, but may actually
be produced at any time, by anyone with access to the newlib-1.9.0 problem-reporting
system.

SCM Records are produced by the SCM Process.

SQA Records are produced by the SQA Process.

The Software Accomplishment Summary (SAS) is produced by the SQA Process.

5.1.2.2. Data Relationships

All relationships among life cycle data items seem clear from the ’Life-Cycle’ section
above.

5.1.2.3. Data Formats

All data items other than Source Code and Executable Object Code are made available
as Adobe PDF files, viewable with the freely available Adobe Acrobat Reader program.
This includes the SVR, and all SCM Records and SQA Records (such as review and
audit forms). If necessary, hand-written data is scanned in order to produce the
necessary PDF files.

Source Code is made available as a UNIX ’tar’ file, known as a "tarball", compressed
with the ’gzip’ utility. Separate tarballs are provided for the Red Hat supplied source

19



The newlib-1.9.0 Library, PSAC

distribution and for the test code created by this project.

Executable Object Code (actually, linkable libraries) for the specific CPU types used in
the Software Verification Process are provided as UNIX-type ’ar’ libraries.

Finally, to assure that complete file-sets for releases are available, all of the files
mentioned above are combined with UNIX tar into a single tarball.

In summary, all life cycle data items are available in an on-line downloadable format
rather than as hardcopies.

5.1.2.4. Means of Submitting Life-Cycle Data

Since newlib-1.9.0 is a reusable library rather than a complete product, no direct
submittal of data by the Birds Project is envisaged. However, all life cycle data (code
and documentation) are available to software developers, certification authorities, or
any other parties, via download over the Internet.

In practice, it is envisaged that developers wishing to use newlib-1.9.0 for their projects
will download the source code and other life cycle data, will archive them within their
own SCM Processes, and will perform whatever submissions are required.

6. Schedule
Because newlib-1.9.0 is a library reusable by developers of airborne software, rather
than for use in any specific standalone hardware-based device, there is no obvious
reason for any scheduled interactions with certification authorities.

The newlib-1.9.0 library is not a commercial project with a planned release date or
other milestones. Hence it can be released whenever it happens to be ready.

In summary, there is no relevant scheduling data that can be presented for the initial
development effort.

20



The newlib-1.9.0 Library, PSAC

7. Additional Considerations

7.1. Alternate Methods of Compliance
No qualification means alternate to DO-178B are used.

7.2. Tool Qualification
In general, a tool requires qualification if its output is used without examination. If the
output of the tool is itself verified (by review, testing, or analysis) this constitutes an
implicit qualification of the tool itself. With that in mind, we can examine the tools
used, one-by-one, and determine their need for qualification:

Native compiler, linker, library archiver, and low-level libraries (gcc, ld, ar, and
libgcc.a). These are used for creating desktop-computer executable code for testing
purposes, or for creating embedded code if the target processor just happens to be the
same as that of a common desktop computer (like Intel ’x86 or PowerPC). These tools
do not require qualifiation, since their outputs (the executable code) are tested.

Cross-compiler, linker, library archiver, and low-level libraries (gcc, ld, ar, and
libgcc.a). These are used for creating embedded Executable Object Code from a
desktop computer, but for a different target CPU type. Technically, these tools also do
not need qualification, since newlib-1.9.0 does not produce Executable Object Code for
these environments as part of its life cycle data. Rather, separate Hardware Abstraction
Layer (HAL) development efforts create this Executable Object Code. As a practical
matter, however, the Birds Project wants the newlib-1.9.0 library to be as easily usable
by developers as possible, and this means that this issue cannot be side-stepped. Easing
HAL qualification is handled by crafting the test suites so that they can be executed in
either the desktop environment or in the target environment (albeit with perhaps more
effort).

Coverage tool (gcov). This is a tool which provides a survey of all source-code lines,
indicating which of them have been exercised in testing and which have not. The
coverage tool must be qualified, since there is no direct way of verifying its output. The
qualification shall be done by creating a C-language program in which various bits of
code are known to execute or not execute, and then to test it with gcov.

All other tools used either have outputs which are examined, or which feed into
operations whose outputs are examined. Therefore, no other tools require qualification.

21



The newlib-1.9.0 Library, PSAC

7.3. Previously-Developed Software
Additonal previously-developed software is not used by newlib-1.9.0.

7.4. Option-Selectable Software
The newlib-1.9.0 library is not, and does not contain, option-selectable software.

7.5. User-Modifiable Software
The newlib-1.9.0 library is not, and does not contain, user-modifiable software.

7.6. Commercial Off-the-Shelf Software
The newlib-1.9.0 library does not use any additional COTS.

7.7. Field-Loadable Software
The newlib-1.9.0 library is not field-loadable as such, but could conceivably be used by
a developer producing a field-loadable program. If so, any considerations relating to
this will be outlined in that developer’s life cycle data.

7.8. Multiple-Version Dissimilar Software
The newlib-1.9.0 library does not use multiple-version dissimilar software.

7.9. Product Service-History
Not applicable.

22



The newlib-1.9.0 Library, PSAC

8. COPYING.NEWLIB
Because the source code for newlib-1.9.0 was written by a large assemblage of
developers, over a period of many years, various developers have chosen to place
various licensing restrictions on the portions of code which they personally provided. In
general, these provisions are very mild, and should not prevent anyone wanting to use
the code from doing so, though display of certain copyright notices may be required.

Red Hat, Inc., has distilled these licensing requirements into a single document,
COPYING.NEWLIB, provided with the newlib-1.9.0 source code. This document is
reproduced in its entirety here, shown in a fixed-width font for emphasis:

The newlib subdirectory is a collection of software from several
sources. Each have their own copyrights embedded in each
file that they concern.

(1) University of California, Berkeley

Copyright (c) 1990 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the University of California, Berkeley. The name of the
University may not be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

(2) DJ Delorie

Copyright (C) 1991 DJ Delorie, 24 Kirsten Ave,
Rochester NH 03867-2954

This file is distributed under the terms listed in the document
"copying.dj", available from DJ Delorie at the address above.
A copy of "copying.dj" should accompany this file; if not, a copy
should be available from where this file was obtained. This file
may not be distributed without a verbatim copy of "copying.dj".

23



The newlib-1.9.0 Library, PSAC

This file is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

(3) David M. Gay at AT
The author of this software is David M. Gay.

Copyright (c) 1991 by AT
Permission to use, copy, modify, and distribute this software
for any purpose without fee is hereby granted, provided that
this entire notice is included in all copies of any software
which is or includes a copy or modification of this software
and in all copies of the supporting documentation for such
software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY
EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER
THE AUTHOR NOR AT MAKES ANY REPRESENTATION OR
WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.

(4) Advanced Micro Devices

Copyright 1989, 1990 Advanced Micro Devices, Inc.

This software is the property of Advanced Micro Devices,
Inc (AMD) which specifically grants the user the right to
modify, use and distribute this software provided this notice
is not removed or altered. All other rights are reserved by
AMD.

AMD MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS SOFTWARE. IN NO EVENT
SHALL AMD BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING FROM THE
FURNISHING, PERFORMANCE, OR USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report
any problems or suggestions about this software to the
29K Technical Support Center at 800-29-29-AMD (800-292-9263)
in the USA, or 0800-89-1131 in the UK, or 0031-11-1129 in
Japan, toll free. The direct dial number is 512-462-4118.

24



The newlib-1.9.0 Library, PSAC

Advanced Micro Devices, Inc.
29K Support Products
Mail Stop 573
5900 E. Ben White Blvd.
Austin, TX 78741
800-292-9263

(5) C.W. Sandmann

Copyright (C) 1993 C.W. Sandmann

This file may be freely distributed as long as the author’s name
remains.

(6) Eric Backus

(C) Copyright 1992 Eric Backus

This software may be used freely so long as this copyright notice
is left intact. There is no warrantee on this software.

(7) Sun Microsystems

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice
is preserved.

(8) Hewlett Packard

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty: permission to use, copy,
modify, and distribute this file for any purpose is hereby granted
without fee, provided that the above copyright notice and this
notice appears in all copies, and that the name of Hewlett-Packard
Company not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission. Hewlett-Packard Company makes no
representations about the suitability of this software for any

25



The newlib-1.9.0 Library, PSAC

purpose.

(9) Unless otherwise stated in each remaining newlib file, the
remaining files in the newlib subdirectory are governed by the
following copyright.

Copyright (c) 1994, 1997 Cygnus Solutions.
All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
at Cygnus Solutions. Cygnus Solutions may not be used to
endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

26


